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This study dealt with domain decomposition in the recently proposed generalized
di!erential quadrature rule. In detail, the authors concentrated on the free vibration of
multispan and stepped Euler beams, and beams carrying an intermediate or end
concentrated mass. Since compatibility conditions should be implemented in a strong form
at the junction of the subdomains concerned, the FEM techniques used for internal
moments and shear forces must not be used. Compatibility conditions and their di!erential
quadrature expressions were explicitly formulated. A peculiar phenomenon was found in
di!erential quadrature applications that equal}length subdomains gave more accurate
results than unequal}length ones using the same number of subdomain grids. Various
examples were presented and very accurate results have been obtained.
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1. INTRODUCTION

The di!erential quadrature method (DQM) was "rst advanced by Bellman and his
associates in the early 1970s [1, 2] aiming towards o!ering an e$cient numerical method
for solving non-linear partial di!erential equations. The method has since been applied
successfully to various problems. When applied to problems with globally smooth
solutions, the DQM can yield highly accurate approximations with relatively few grid
points. This has made the DQM a favorable choice in comparison to standard "nite
di!erence and "nite element methods. In recent years, the DQM has become increasingly
popular in solving di!erential equations and is gradually emerging as a distinct numerical
solution technique. An updating of the state of the art on the DQM and a comprehensive
survey of its applications are available from two recent review papers [3, 4]. Bellomo [3]
focused his attention on the conventional DQM, which dealt with di!erential equations of
no more than second order. Bert and Malik [4] have cited seven examples to explain its
applications, six of which still belong to the conventional DQM. Only the third of the seven
examples dealt with the high order di!erential equation of Euler beam, whose governing
equation is a fourth order one with double boundary conditions at each boundary. The
main di$culty for such high order problems as Euler beams is that there are multiple
boundary conditions but only one variable (function value) at each boundary. To apply the
double conditions, a d-point approximation approach of the sampling points was "rst
proposed by Jang et al. in 1989 [5] and discussed thoroughly by Bert and Malik [4]. The
crux of the d-point technique is that an inner point near the boundary point is
approximately regarded as a boundary point. The introduction of the d-point technique to
0022-460X/01/380461#21 $35.00/0 ( 2001 Academic Press
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multiple boundary condition problems indicated a major development in the application of
the DQM to high order di!erential equations in solid mechanics. However, this
breakthrough was also accompanied by a major disadvantage, an arbitrary choice of the
d-value. Shu and Chen [6] made a new endeavor to improve the distribution of the
sampling points still using the d-point technique.

A detailed literature review is unnecessary due to the recent appearance of the two review
papers [3, 4]. In order to develop a better alternative to the d-point technique in solving
fourth order di!erential equations for beam and plate problems, a new method was
proposed in references [7}10], where the boundary points' rotation angles of beam and
plate structures were employed as independent variables. Therefore, the shortcomings
corresponding to the d-point technique have been overcome successfully. Wang and Gu [7]
also mentioned a generalization of their method to sixth and eighth order equations, and
Bellomo [3] also tried to generalize the conventional DQM to more than third order
equations. However, they [3, 7] did not give the details of the implementation, and no paper
related to the just-mentioned generalizations has appeared until the present time to the
authors' knowledge.

The generalization of the DQM to any high order di!erential equations is apparently an
urgent need in the present DQM research. The generalized di!erential quadrature rule
(GDQR) has been proposed recently by the present authors [11}17] and detailed
formulations have been presented to implement any high order di!erential equations. The
GDQR has been applied for the "rst time to sixth and eighth order problems [18}20] and
to third order problems [20] without using the d-point technique. Moreover, the GDQR
has been extended to high order initial value di!erential equations of second to fourth
orders [12}14], while no one has mentioned this generalization.

In this paper the GDQR was still applied to the Euler beam problem. It is seemingly
unnecessary for this kind of simple problem to be dealt with again, since it has been solved
in many papers either using the d-point technique [4, 21] or not [7, 8, 12]. A scrutiny has
been made only to "nd that a beam with intermediate supports has not been coped with in
references [7, 8, 12]. Du et al. [21] studied Euler beam with an internal pinned support,
where Table 2 showed that the critical loads converged to only two or three signi"cant
"gures even using as many as 23 sampling points. A similar problem, a circular annular
plate with an intermediate circular support, was studied in reference [22]. The fundamental
frequencies obtained using the DQM di!ered by about 10% from exact values, and the
DQM did not provide satisfactory accuracy for some cases. It is apparent that an error
must have occurred in these simple problems. Domain decomposition should have been
employed at the intermediate supports but failed to be applied in references [21, 22],
because a shear force discontinuity exists there and the continuously di!erentiable trial
functions are employed in the DQM. Domain decomposition has been used and very
accurate results have been obtained by the present authors [15]. The above analysis
indicates that the study in this paper is necessary for a correct and thorough understanding
of the DQ techniques. Moreover, the solution accuracy produced by the method itself can
be substantiated quantitatively, since many examples have analytic solutions and the
disturbance caused by d-point values is exempted.

In this paper, the authors concentrated on the free vibration of multispan and stepped
Euler beams, and beams carrying an intermediate or end concentrated mass. Since most
functions do not have globally smooth solutions, domain decomposition must be employed
at the junction of the subdomains concerned. Compatibility conditions and their di!erential
quadrature expressions were explicitly formulated. The length of subdomains was studied in
detail. Ample examples were employed to display the application of the domain
decomposition in the DQ technique.
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2. APPLICATIONS

The free vibration of Euler beams is governed by fourth order di!erential equations. The
fourth order di!erential equations for various problems have been solved using the GDQR
in papers [12, 15}17], and the GDQR expression for a fourth order boundary value
di!erential equation has been used as follows:
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The cosine}type sampling points in normalized interval [0, 1] will be employed in this
work. Their advantage has been discussed in paper [4]
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2.1. EXAMPLE 1: STEPPED BEAMS

Consider the free vibration of a straight Euler beam having stepped cross-section only at
one place, as shown in Figure 1. These two sections have uniform cross-sections
individually. They have di!erent #exural rigidity (EI

1
and EI

2
) and di!erent cross-section

area (A
1

and A
2
). Here the GDQR's solutions are compared with those analytical solutions

in paper [23], which considered a stepped beam with circular-section and with
Figure 1. The stepped-beam geometry.
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where o is the density, u the circular frequency, and ¸ the total length of the beam. Through
normalization manipulation, equations (3) and (4) are written, respectively, as
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is dimensionless frequency parameter, and f normalized local

co-ordinate.
Usually, the same number N of sampling points of subdomains is used. These two

sections thus have a total of 2N!1 points, as shown in Figure 1. The two sections shared
the common point x

N
, along with its two corresponding variables w

N
and w(1)

N
. The

independent variables of the "rst section M;*1+N and the second section M;*2+N in the global
co-ordinate are expressed as follows:
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The whole beam has a total of 2N#2 independent variables as expressed in equation (7).
According to equation (1), the GDQR analogues for governing equations (5) and (6) at each
section's inner points x

i
can be written, respectively, as follows:
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Equations (8) and (9) have a total number of 2](N!2) equations. The compatibility
conditions at the common points x

N
are that: (1) the bending moment calculated by section

1 equals the bending moment computed by section 2, (2) the shear force calculated by
section 1 equals the shear force computed by section 2. They are expressed, respectively, as
follows:
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The two compatibility conditions' GDQR analogues are written, respectively, as
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For simplicity and convenience, the boundary conditions of pinned, clamped, free, and
sliding types are denoted as P, C, F and S respectively. The P}C boundary condition will
identify the beam with the ends x"0 and ¸ having pinned and clamped boundary
conditions respectively. Four types of boundary conditions (pinned, clamped, free and
sliding) are considered, respectively, as follows:
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The GDQR analogues for equation (12) are written at x"0 and ¸, respectively,
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For clamped ends at x"0 and ¸, one has from equation (13), respectively,
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for free ends at x"0 and ¸ and from equation (14),
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and for sliding ends at x"0 and ¸ and from equation (15),
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There are two boundary conditions at each end, and totally four boundary conditions,
which have four GDQR analogues from a proper combination of equations (16)} (19).



TABLE 1

Numerical results for j"4JoA
1
u2¸4/EI

1
of the ,rst two modes of stepped beams for various

boundary conditions

Mode I
2
/I

1
P}P C}C C}F C}P F}F

1 3)14159 4)73004 1)87510 3)92660 4)73004
5 3)22690 5)09501 1)56120 4)03498 4)91579

1 10 3)14294 5)26125 1)43629 3)93864 4)85241
20 3)01242 5)50647 1)31977 3)77582 4)74052
40 2)85253 5)85877 1)21181 3)57074 4)60333
1 6)28319 7)85320 4)69409 7)06858 7)85320
5 7)11734 8)84035 4)72584 7)97403 8)83221

2 10 7)48932 9)23935 4)59285 8)48705 9)21336
20 7)75541 9)49788 4)40079 8)95134 9)44771
40 7)89647 9)62033 4)16961 9)26478 9)54664

S}S S}P C}S F}S F}P

1 3)14159 1)57080 2)36502 2)36502 3)92660
5 3)67592 1)56116 2)38563 3)05981 4)31396

1 10 3)98830 1)52619 2)37320 3)32444 4)33175
20 4)27725 1)47787 2)31459 3)52235 4)28989
40 4)49393 1)41851 2)21163 3)64619 4)21638
1 6)28319 4)71239 5)49780 5)49780 7)06858
5 6)70841 5)18341 5)91362 5)92170 7)94119

2 10 6)85899 5)25357 6)17931 6)16921 8)44328
20 7)09381 5)24429 6)56198 6)53542 8)89891
40 7)47091 5)18642 7)06626 7)03141 9)20636
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Together with two equations from compatibility condition equation (11) and 2](N!2)
equations from governing equations (8) and (9), a total number of 2N#2 equations is
formed. The total number of independent variables expressed in equation (7) is also 2N#2.
The resulting di!erential quadrature equations can be solved to get the required
frequencies. The procedures in the solution of formed algebraic eigenvalue equations are
detailed in references [4, 12, 15] and omitted here for brevity. These four types of boundary
conditions will form 10 combinations of beam boundary conditions. The present work
calculated all the 10 cases with di!erent b values and listed the results in Table 1. Using
eight sampling points for each subdomain, the GDQR fundamental frequencies for all the
10 cases are exactly the same as the exact analytical solutions in reference [23] and are
accurate to "ve signi"cant "gures. Since only fundamental frequencies were given in
reference [23], the second frequencies are calculated purposely for a comparison with other
methods. Twelve points are needed for the second frequencies to be accurate to "ve
signi"cant "gures.

2.2. EXAMPLE 2: UNIFORM MULTISPAN BEAMS

Consider the equi-spaced uniform multispan beams with each span length l, total length
¸, #exural rigidity EI and cross-section A. Other prerequisites are the same as those in
example 1. The multispan beam with pinned intermediate supports would have
a concentrated shear force at the inner supports, which also constitute another kind of
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discontinuity. Therefore, domain decomposition must be employed there. What
compatibility conditions does one have at this discontinuous place? The rotation angle and
the concentrated force are unknown and thus cannot form a compatibility condition. The
zero displacement is certainly the simplest compatibility condition. The second
compatibility condition is that the bending moment calculated by the left section
equals the bending moment computed by the right section. Here a double-span uniform
beam's compatibility conditions and corresponding GDQR analogues are given as an
example:
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More span beam's identical compatibility conditions at other junctions can be obtained
in a similar way and omitted here for simplicity. The GDQR analogues of 10 combinations
of boundary conditions have already been listed in equations (16)} (19) for double-span
beams. Similar expressions can be easily obtained for more span beams. The governing
equation of the (m#1)th span and its GDQR analogues can be written, respectively, as
follows:
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where j"4Ju2oAl4/EI is a dimensionless frequency parameter. Q"mN!m#1 is the
numbering of the "rst sampling point of the (m#1)th span, and P"m(N#2)!2m#1 is
the numbering of the last variable of the mth span at inner points.

Again all the 10 combinations of boundary conditions are calculated and compared with
results in reference [24], which listed the "rst six frequencies for 1}15 spans. The "nite
element method was used to obtain the frequencies in reference [24]. The present GDQR's
"rst}sixth frequencies are all accurate to more than three signi"cant "gures. Here, only F}F
case is listed in Table 2 for a comparison. The other cases are also calculated but omitted for
simplicity. For a comparison with other methods, the seventh frequencies are also
calculated on purpose.

2.3. EXAMPLE 3: UNIFORM BEAMS WITH END MASS

Reference [25] calculated the free vibration of an S}C single}span beam carrying
a concentrated mass M at the sliding end. More accurate results than those in reference [25]
are presented here. Since the mass is at the end and the beam is of uniform single span,
domain decomposition is unnecessary here. This example is designed to show how to
implement the boundary condition with the frequency in it. The two boundary conditions



TABLE 2

Frequency parameters j"4JoAu2l4/EI for F}F multispan beam

Mode sequence
Span

Method N no. 1 2 3 4 5 6 7

20 2 1)87510 3)92660 4)69409 7)06858 7)85476 10)21018 10)99554
15 3 1)41181 1)64778 3)57994 4)27231 4)70627 6)70658 7)43063
12 4 1)50592 1)57080 3)41310 3)92660 4)43727 4)71239 6)54456
12 5 1)52987 1)54793 3)32299 3)71010 4)14305 4)52700 4)71607
10 6 1)53642 1)54145 3)27008 3)56846 3)92660 4)28449 4)58076
9 7 1)53823 1)53964 3)23687 3)47167 3)76940 4)08379 4)38121
9 8 1)53874 1)53913 3)21483 3)40317 3)65284 3)92660 4)20035
9 9 1)53888 1)53899 3)19954 3)35325 3)56450 3)80325 4)04995

GDQR 9 10 1)53892 1)53895 3)18854 3)31594 3)49625 3)70533 3)92660
9 11 1)53893 1)53894 3)18036 3)28743 3)44263 3)62658 3)82513
9 12 1)53893 1)53894 3)17414 3)26523 3)39985 3)56250 3)74103
9 13 1)53894 1)53894 3)16929 3)24763 3)36529 3)50978 3)67075
9 14 1)53894 1)53894 3)16545 3)23348 3)33701 3)46597 3)61155
9 15 1)53894 1)53894 3)16235 3)22194 3)31362 3)42925 3)56129
9 16 1)53894 1)53894 3)15981 3)21241 3)29409 3)39820 3)51834
9 17 1)53894 1)53894 3)15771 3)20447 3)27763 3)37175 3)48139
9 18 1)53894 1)53894 3)15596 3)19777 3)26365 3)34907 3)44940
9 19 1)53894 1)53894 3)15447 3)19208 3)25167 3)32948 3)42156
9 20 1)53894 1)53894 3)15320 3)18721 3)24134 3)31247 3)39720

2 1)875 3)927 4)694 7)069 7)855 10)21
3 1)412 1)648 3)580 4)273 4)707 6)707
4 1)506 1)571 3)413 3)928 4)438 4)713
5 1)530 1)548 3)324 3)710 4)144 4)528
6 1)537 1)542 3)270 3)568 3)927 4)285
7 1)538 1)540 3)237 3)471 3)770 4)084

Reference [24] 8 1)539 1)539 3)215 3)404 3)653 3)926
9 1)539 1)539 3)200 3)353 3)564 3)803

10 1)539 1)539 3)189 3)316 3)496 3)705
11 1)539 1)539 3)180 3)287 3)443 3)626
12 1)539 1)539 3)174 3)265 3)400 3)563
13 1)539 1)539 3)169 3)248 3)365 3)510
14 1)539 1)539 3)166 3)234 3)337 3)466
15 1)539 1)539 3)162 3)222 3)313 3)430
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at sliding end are zero rotation angle and the following equation [25]:
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The clamped boundary condition is identical to the above-mentioned one. The GDQR
analogue of governing equation is identical to equation (8) with ¸

1
"¸. If the normal mode

is assumed as =(x, t)"w (x)e*ut, substituting into equation (24) produces
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Its GDQR analogue can be written as

!

oA¸

M

N`2
+
j/1

E (3)
1j
;

j
"j4w

1
, (26)

where j"4Ju2oA¸4/EI is dimensionless frequency parameter.
This boundary condition contains the eigenvalue of the problem. Usually, the two

displacements and two rotation angles at two ends can be eliminated in the "nal standard
eigenvalue equation of order N!2, as shown in papers [4, 12]. But now one boundary
displacement w

1
is connected with the frequency. Then the "nal standard eigenvalue

equation is of order N!1. Even if all the boundary independent variables are connected
with the frequency, with the "nal standard eigenvalue equation being of order N#2, no
algorithmic di$culty is caused in the GDQR. The analytic frequency characteristic
equation was [25]

M

oA¸

"

sin j cosh j#cos j sinh j
j(1!cos j cosh j)

. (27)

Similarly, if the beam is an F}C single-span beam carrying a concentrated mass at the free
end, only the boundary condition at x"0 is changed from zero rotation angle to zero
moment with all the other equations identical to those for the S}C case. Table 3 showed the
GDQR results. The characteristic equation for the F}C case was [26]

M

oA¸

"

1#cos j cosh j
j(sin j cosh j!cos j sinh j)

. (28)

2.4. EXAMPLE 4: STEPPED BEAMS WITH END MASS

For the above-mentioned S}C single-span beam carrying a concentrated mass at the
sliding end, reference [27] has considered non-uniform cross-section with discontinuity at
x"¸/3, ¸/2 and 2¸/3, as shown in Figure 2. Each section has the same width of
a rectangular cross-section, and their height ratio a"t

1
/t

2
"0)8. The GDQR results for

x"¸/2 case are obtained with two sections. The GDQR results for x"¸/3 and 2¸/3 cases
are obtained with three equal-length sections. All the necessary boundary conditions,



TABLE 3

Frequency parameter j"4JoAu2¸4/EI of uniform beams with end mass

M Mode sequence
Boundary
condition oA¸ 1 2 3 4 5 6 7

0 2)36501 5)49778 8)63934 11)78091 14)92249 18)06407 21)20564
0)2 2)13339 5)17434 8)21537 11)29334 14)38954 17)49745 20)61314
0)6 1)87254 4)96859 8)02377 11)12516 14)24155 17)36611 20)49541
1 1)71888 4)89277 7)96446 11)07821 14)20285 17)33325 20)46690
1)6 1)57028 4)84017 7)92627 11)04909 14)17936 17)31359 20)45000
2 1)49954 4)82063 7)91266 11)03891 14)17123 17)30683 20)44422

S}C 2)6 1)41742 4)80159 7)89967 11)02929 14)16360 17)30050 20)43882
3 1)37341 4)79279 7)89376 11)02494 14)16016 17)29766 20)43640
3)6 1)31834 4)78302 7)88726 11)02019 14)15641 17)29457 20)43376
4 1)28711 4)77804 7)88398 11)01779 14)15452 17)29301 20)43244
4)6 1)24639 4)77210 7)88009 11)01496 14)15229 17)29118 20)43088
5 1)22252 4)76890 7)87800 11)01344 14)15110 17)29019 20)43005

10 1)03713 4)74995 7)86578 11)00461 14)14419 17)28451 20)42522
15 0)93997 4)74342 7)86163 11)00163 14)14186 17)28260 20)42361
20 0)87607 4)74012 7)85954 11)00013 14)14069 17)28164 20)42279

0 1)87509 4)69404 7)85468 10)99543 14)13703 17)27859 20)42015
0)5 1)41996 4)11113 7)19034 10)29845 13)42100 16)55028 19)68326
1 1)24792 4)03114 7)13413 10)25662 13)38776 16)52273 19)65975
1)5 1)14644 3)99951 7)11342 10)24168 13)37608 16)51315 19)65163
2 1)07620 3)98257 7)10265 10)23402 13)37012 16)50828 19)64752
2)5 1)02327 3)97202 7)09605 10)22935 13)36651 16)50533 19)64503
3 0)98123 3)96482 7)09160 10)22621 13)36409 16)50336 19)64337
3)5 0)94662 3)95958 7)08838 10)22395 13)36235 16)50194 19)64217

F}C 4 0)91736 3)95561 7)08596 10)22225 13)36104 16)50088 19)64128
4)5 0)89213 3)95249 7)08406 10)22093 13)36002 16)50005 19)64058
5 0)87002 3)94998 7)08254 10)21986 13)35920 16)49939 19)64002
7)5 0)78914 3)94234 7)07794 10)21666 13)35674 16)49739 19)63834

10 0)73578 3)93847 7)07562 10)21505 13)35550 16)49638 19)63749
20 0)62051 3)93258 7)07211 10)21262 13)35364 16)49487 19)63623
50 0)49434 3)92900 7)07000 10)21115 13)35242 16)49397 19)73546

100 0)41593 3)92780 7)06929 10)21067 13)35214 16)49366 19)63521
200 0)34986 3)92720 7)06894 10)21042 13)35196 16)49351 19)63508
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Figure 2. The non-uniform S}C beam with end mass.
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compatibility conditions and governing equation have been given before and omitted
here for brevity. Table 4 showed good agreements between the GDQRs and FEMs
results.

2.5. EXAMPLE 5: UNIFORM BEAMS WITH INTERMEDIATE MASS

References [28, 29] considered the concentrated mass at an intermediate point (x"¸/3
or ¸/2) of single-span uniform beam. The mass will apply a dynamic concentrated force in
vibration problems. Domain decomposition must also be employed, though the beam is
uniform single span. For the case x"¸/2, two equal-length sections are used. The
compatibility conditions are as follows:

AEI
d2w

dx2B
1

"AEI
d2w

dx2B
2

, AEI
d3w

dx3B
2

!AEI
d3w

dx3B
1

"Mu2w, (29)

where the su$x expresses the section number. The two compatibility conditions' GDQR
expressions are written as
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, (30)

where j"4Ju2oA¸4/EI is dimensionless frequency parameter.
The GDQR analogues of governing equations are identical to equations (8) and (9) with

b"1 (due to uniform cross-section). Only P}P and C}C beams are considered here. For the
case x"¸/3, both three equal-length and two di!erent-length sections are used. The results
are listed in Table 5(a)} (c). The FEM was used in paper [24]. The Laplace transform was
employed to obtain a characteristic equation in paper [28]. An analytic characteristic
equation was obtained in paper [29].



TABLE 4

Frequency parameter j"4JoA
1
u2¸4/EI

1
of S}C stepped (x"¸/3, ¸/2, 2¸/3) and uniform (x"0) beams with end mass

M/oA
1
¸

x Method 0 0)2 0)4 0)6 0)8 1 5 10

GDQR 5)59327 4)55135 3)92932 3)50640 3)19544 2)95455 1)49456 1)075640
Exact [27] 5)59332 4)552 3)929 3)506 3)195 2)954 1)494 1)075
GDQR 6)70986 5)46382 4)71752 4)20968 3)83617 3)54681 1)79350 1)29067

¸/3
FEM [27] 6)70 5)45 4)71 4)20 3)83 3)54 1)79 1)28
GDQR 6)82247 5)52233 4)75325 4)23365 3)85322 3)55943 1)79294 1)28945

¸/2
FEM [27] 6)81 5)51 4)74 4)22 3)84 3)55 1)79 1)28
GDQR 6)79785 5)47275 4)69859 4)17885 3)79975 3)50773 1)76203 1)266662¸/3
FEM [27] 6)79 5)46 4)69 4)17 3)79 3)50 1)76 1)26
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TABLE 5 (a)

Frequency parameter j"4JoAu2¸4/EI of uniform beams carrying a concentrated mass at x"¸/2

M Mode sequence
Boundary
condition oA¸ 1 2 3 4 5 6

10~10 3)14159 6)28319 9)42478 12)56637 15)70796 18)84956
10~5 3)14158 6)28319 9)42473 12)56637 15)70788 18)84956
0)01 3)12607 6)28319 9)37897 12)56637 15)63277 18)84956
0)01 (3)129) (6)285) (9)380)
0)1 3)00130 6)28319 9)05955 12)56637 15)17126 18)84956
0)1 (3)004) (6)285) (9)061)
0)2 2)88726 6)28319 8)83030 12)56637 14)90092 18)84956
0)2 M2)887N

P}P 0)5 2)63931 6)28319 8)47440 12)56637 14)56167 18)84956
1 2)38319 6)28319 8)23944 12)56637 14)38016 18)84956
1 M2)384N
2 2)09598 6)28319 8)07304 12)56637 14)26797 18)84956
5 1)71985 6)28319 7)94909 12)56637 14)19198 18)84956
5 M1)719N

10 1)46271 6)28319 7)90264 12)56637 14)16501 18)84956
10 M1)463N
50 0)98746 6)28319 7)86334 12)56637 14)14281 18)84956

100 0)83135 6)28319 7)85829 12)56637 14)13999 18)84956
10~10 4)73004 7)85320 10)99561 14)13717 17)27876 20)42035
10~5 4)73001 7)85320 10)99555 14)13717 17)27867 20)42035
0)01 4)70065 7)85320 10)94300 14)13717 17)19633 20)42035
0)01 (4)701) (7)853) (10)943)
0)1 4)46984 7)85320 10)58876 14)13717 16)70539 20)42035
0)1 (4)470) (7)853) (10)589)
0)2 4)26678 7)85320 10)34868 14)13717 16)43074 20)42035
0)2 M4)250N
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TABLE 5 (a)

Continued

M Mode sequence
Boundary
condition oA¸ 1 2 3 4 5 6

C}C 0)5 3)84707 7)85320 9)99991 14)13717 16)09984 20)42035
1 3)43776 7)85320 9)78554 14)13717 15)92892 20)42035
1 M3)440N
2 2)99908 7)85320 9)64127 14)13717 15)82532 20)42035
5 2)44504 7)85320 9)53780 14)13717 15)75599 20)42035
5 M2)446N
10 2)07425 7)85320 9)49990 14)13717 15)73155 20)42035
10 M2)072N
50 1)39727 7)85320 9)46820 14)13717 15)71150 20)42035
100 1)17604 7)85320 9)46415 14)13717 15)70896 20)42035

Note: Data in &&( )'' from reference [28], in &&M N'' from reference [24].
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TABLE 5 (b)

Frequency parameter j"4JoAu2¸4/EI, which is obtained using three equal-length sections, of uniform beams carrying a concentrated mass at
x"¸/3

M Mode sequence
Boundary
condition oA¸ 1 2 3 4 5 6

10~10 3)14159 6)28319 9)42478 12)56637 15)70796 18)84956
10~5 3)14158 6)28316 9)42478 12)56632 15)70790 18)84956
0)01 3)12991 6)26017 9)42478 12)52046 15)65212 18)84956
0)01 (3)133) (6)262) (9)426)
0)1 3)03278 6)09308 9)42478 12)19934 15)33373 18)84956
0)1 (3)0339) (6)095) (9)426)
0)2 2)93929 5)96510 9)42478 11)97435 15)16707 18)84956
0)2 M2)9413N

P}P 0)5 2)72241 5)75135 9)42478 11)64505 14)97854 18)84956
0)5 M2)7258N
1 2)48255 5)59983 9)42478 11)44416 14)88676 18)84956
1 M2)485N
2 2)19986 5)48777 9)42478 11)31035 14)83304 18)84956
2 M2)2043N
5 1)81570 5)40203 9)42478 11)21524 14)79791 18)84956
5 M1)8199N

10 1)54770 5)36948 9)42478 11)18059 14)78568 18)84956
10 M1)5514N
50 1)04684 5)34178 9)42478 11)15170 14)77571 18)84956
50 M1)0494N

100 0)88156 5)33821 9)42478 11)14802 14)77445 18)84956
100 M0)88369N
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TABLE 5 (b)

Continued

M Mode sequence
Boundary
condition oA¸ 1 2 3 4 5 6

10~10 4)73004 7)85320 10)99561 14)13717 17)27876 20)42035
10~5 4)73002 7)85316 10)99560 14)13713 17)27868 20)42035
0)01 4)71210 7)81391 10)99152 14)10336 17)20276 20)41394
0)01 (4)712) (7)814) (10)992)
0)1 4)56043 7)53842 10)96400 13)86852 16)77405 20)37802
0)1 (4)560) (7)538) (10)964)
0)2 4)41153 7)34045 10)94524 13)70666 16)55492 20)35909

C}C 0)5 4)06264 7)03852 10)91762 13)47612 16)31369 20)33683
1 3)68039 6)84806 10)90034 13)34025 16)19944 20)32541
1 M3)680N
2 3)24028 6)72025 10)88854 13)25206 16)13371 20)31849
5 2)65859 6)62992 10)87999 13)19058 16)09120 20)31384

10 2)26054 6)59728 10)87684 13)16843 16)07649 20)31220
50 1)52559 6)57020 10)87420 13)15008 16)06453 20)31085

100 1)28435 6)56676 10)87386 13)14774 16)06302 20)31068

Note: Data in &&( )'' from reference [28], in &&M N'' from reference [29].
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TABLE 5 (c)

Frequency parameter j"4JoAu2¸4/EI, which is obtained using two sections of di+erent length, of uniform beams carrying a concentrated
mass at x"¸/3

M Mode sequence
Boundary
condition oA¸ 1 2 3 4 5 6

10~10 2)99811 6)42423 9)42478 12)42563 15)84870 18)84956
10~5 2)99810 6)42421 9)42478 12)42558 15)84864 18)84956
0)01 2)98631 6)40288 9)42478 12)37620 15)79745 18)84956
0)01 4)58% !2)28% 0% 1)15% !0)90% 0%
0)1 2)88892 6)24725 9)42478 12)03635 15)50192 18)84956

P}P 0)2 2)79625 6)12734 9)42478 11)80293 15)34420 18)84956
0)5 2)58429 5)92549 9)42478 11)46580 15)16222 18)84956
1 2)35306 5)78091 9)42478 11)26193 15)07192 18)84956
2 2)08297 5)67293 9)42478 11)12669 15)01847 18)84956
5 1)71801 5)58956 9)42478 11)03079 14)98325 18)84956

10 1)46407 5)55769 9)42478 10)99589 14)97094 18)84956
10 5)40% !3)51% 0% 1)65% !1)25% 0%
50 0)99008 5)53048 9)42478 10)96681 14)96088 18)84956

100 0)83375 5)52697 9)42478 10)96310 14)95961 18)84956

10~10 4)62970 7)94594 11)07899 13)96678 17)35779 20)50815
10~5 4)62968 7)94591 11)07899 13)96674 17)35771 20)50814
0)01 4)61025 7)90999 11)07702 13)92588 17)28748 20)50522
0)01 2)16% !1)23% !0)78% !0)41% !0)49% !0)45%
0)1 4)44831 7)65829 11)06337 13)64767 16)89121 20)48812
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TABLE 5 (c)

Continued

M Mode sequence
Boundary
condition oA¸ 1 2 3 4 5 6

C}C 0)2 4)29298 7)47747 11)05367 13)46121 16)68794 20)47855
0)5 3)93887 7)20049 11)03871 13)20130 16)46219 20)46673
1 3)56032 7)02374 11)02889 13)05048 16)35401 20)46040
2 3)13041 6)90343 11)02197 12)95332 16)29124 20)45647
5 2)56639 6)81720 11)01684 12)88587 16)25041 20)45379

10 2)18160 6)78573 11)01492 12)86163 16)23624 20)45283
10 3)49% !2)86% !1)27% 2)33% !0)99% !0)69%
50 1)47204 6)75950 11)01330 12)84155 16)22470 20)45204

100 1)23925 6)75615 11)01310 12)83900 16)22324 20)45194

Note: Data expressed in per cent are relative errors compared with the results in Table 5(b).
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3. DISCUSSION

Domain decomposition must be employed in the DQ technique if the solution function is
not continuously di!erentiable in the solution domain, since the weighting coe$cients are
obtained using continuously di!erentiable trial functions. Within a subdomain, the solution
function should be continuously di!erentiable. At the junction of the subdomains
concerned, compatibility conditions must be implemented in a strong form. Naturally, the
governing equations are written individually for the sections with di!erent #exural rigidity
as done in equations (3) and (4), and domain decomposition is applied accordingly.
However, domain decomposition should still be employed for multispan beams with
uniform cross-sections, since a discontinuity exists there too. Similarly, domain
decomposition must be applied to example 5, which is more deceptive since it is a uniform
single-span beam. It is clear that every subdomain end has two compatibility conditions
corresponding to two independent variables. Four conditions are indispensable to the
fourth order governing equations.

In all the examples in this work, eight sampling points for each subdomain produce the
fundamental frequencies accurate to about "ve signi"cant "gures. More than 15 discrete
points for each subdomain will bring about the "rst}sixth frequencies accurate to about
seven signi"cant "gures. For more than "ve span beams, eight sampling points for each
subdomain are usually used.

When the domain decomposition point in examples 4 and 5 is not at the center of the
beam (i.e., x"¸/3 and 2¸/3), three equal-length sections had to be used to obtain more
accurate results than two unequal-length sections. In fact, the results obtained using two
unequal-length sections are very bad, as shown in Table 5(c) where some relative errors are
about 5%. This quite peculiar phenomenon is "rst reported here in the DQ solution, and
needs more study. The FDM and the present DQ technique solve di!erent equations in
a strong form. It is well known that the FDM usually produces a worse accuracy with
unequal length grids than with equal grids, while the authors think that a similar
phenomenon may exist in the present DQ technique.

When the concentrated mass ratio M/oA¸ is gradually reduced to zero, the obtained
frequency should equal that calculated without mass. In actual calculation, only a very
small number can be employed. The mass ratio M/oA¸ should be larger than 10~12. If it is
less than this number, unreasonable results are obtained.

It is interesting to note that the frequencies of the "rst and second modes for multispan
F}F beams in Table 2 are identical (1)53894) when the span number is larger than 11. For
multispan F}P, F}C, and F}S beams, their "rst frequencies are all 1)53894 when the span
number exceeds a certain number. The beam should adopt two di!erent modes for the "rst
and second modes. The two di!erent modes for the "rst and second modes of multispan
F}F beams should be exactly the "rst mode of multispan F}P, F}C, or F}S beams.
Therefore, the frequencies of the "rst and second modes are identical (1)53894) for F}F
multispan beams when the span number is larger than 11.

It is also noted that the frequencies for even modes given in Table 5(a) do not change with
the change of M/oA¸. The reason is that the displacement at x"¸/2 is always zero for even
modes. The mid-point equals a simply supported point. Therefore, the mid-point mass has
no e!ects, and the corresponding frequencies do not change with the change of M/oA¸.

4. CONCLUSION

Five examples for the free vibration of Euler beams have been applied using the domain
decomposition and the GDQR. Since compatibility conditions should be implemented in
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a strong form at the junction of the subdomains concerned, compatibility conditions and
their di!erential quadrature expressions were explicitly formulated. A peculiar
phenomenon was found in the di!erential quadrature applications that equal-length
subdomains give more accurate results than unequal-length ones using the same number of
subdomain grids. The study in this work is necessary for a correct and thorough
understanding of the DQ techniques. Various examples were presented and very accurate
results have been obtained.
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