VIBRATION ANALYSIS OF BEAMS USING THE GENERALIZED DIFFERENTIAL QUADRATURE RULE AND DOMAIN DECOMPOSITION

G. R. Liu and T. Y. Wu
Department of Mechanical Engineering, The National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore. E-mail: engp8773@nus.edu.sg

(Received 15 June 2000, and in final form 10 January 2001)

Abstract

This study dealt with domain decomposition in the recently proposed generalized differential quadrature rule. In detail, the authors concentrated on the free vibration of multispan and stepped Euler beams, and beams carrying an intermediate or end concentrated mass. Since compatibility conditions should be implemented in a strong form at the junction of the subdomains concerned, the FEM techniques used for internal moments and shear forces must not be used. Compatibility conditions and their differential quadrature expressions were explicitly formulated. A peculiar phenomenon was found in differential quadrature applications that equal-length subdomains gave more accurate results than unequal-length ones using the same number of subdomain grids. Various examples were presented and very accurate results have been obtained.

(C) 2001 Academic Press

1. INTRODUCTION

The differential quadrature method (DQM) was first advanced by Bellman and his associates in the early 1970s [1, 2] aiming towards offering an efficient numerical method for solving non-linear partial differential equations. The method has since been applied successfully to various problems. When applied to problems with globally smooth solutions, the DQM can yield highly accurate approximations with relatively few grid points. This has made the DQM a favorable choice in comparison to standard finite difference and finite element methods. In recent years, the DQM has become increasingly popular in solving differential equations and is gradually emerging as a distinct numerical solution technique. An updating of the state of the art on the DQM and a comprehensive survey of its applications are available from two recent review papers [3, 4]. Bellomo [3] focused his attention on the conventional DQM, which dealt with differential equations of no more than second order. Bert and Malik [4] have cited seven examples to explain its applications, six of which still belong to the conventional DQM. Only the third of the seven examples dealt with the high order differential equation of Euler beam, whose governing equation is a fourth order one with double boundary conditions at each boundary. The main difficulty for such high order problems as Euler beams is that there are multiple boundary conditions but only one variable (function value) at each boundary. To apply the double conditions, a δ-point approximation approach of the sampling points was first proposed by Jang et al. in 1989 [5] and discussed thoroughly by Bert and Malik [4]. The crux of the δ-point technique is that an inner point near the boundary point is approximately regarded as a boundary point. The introduction of the δ-point technique to
multiple boundary condition problems indicated a major development in the application of the DQM to high order differential equations in solid mechanics. However, this breakthrough was also accompanied by a major disadvantage, an arbitrary choice of the δ-value. Shu and Chen [6] made a new endeavor to improve the distribution of the sampling points still using the δ-point technique.

A detailed literature review is unnecessary due to the recent appearance of the two review papers [3, 4]. In order to develop a better alternative to the δ-point technique in solving fourth order differential equations for beam and plate problems, a new method was proposed in references [7-10], where the boundary points' rotation angles of beam and plate structures were employed as independent variables. Therefore, the shortcomings corresponding to the δ-point technique have been overcome successfully. Wang and Gu [7] also mentioned a generalization of their method to sixth and eighth order equations, and Bellomo [3] also tried to generalize the conventional DQM to more than third order equations. However, they $[3,7]$ did not give the details of the implementation, and no paper related to the just-mentioned generalizations has appeared until the present time to the authors' knowledge.

The generalization of the DQM to any high order differential equations is apparently an urgent need in the present DQM research. The generalized differential quadrature rule (GDQR) has been proposed recently by the present authors [11-17] and detailed formulations have been presented to implement any high order differential equations. The GDQR has been applied for the first time to sixth and eighth order problems [18-20] and to third order problems [20] without using the δ-point technique. Moreover, the GDQR has been extended to high order initial value differential equations of second to fourth orders [12-14], while no one has mentioned this generalization.

In this paper the GDQR was still applied to the Euler beam problem. It is seemingly unnecessary for this kind of simple problem to be dealt with again, since it has been solved in many papers either using the δ-point technique $[4,21]$ or not $[7,8,12]$. A scrutiny has been made only to find that a beam with intermediate supports has not been coped with in references [7, 8, 12]. Du et al. [21] studied Euler beam with an internal pinned support, where Table 2 showed that the critical loads converged to only two or three significant figures even using as many as 23 sampling points. A similar problem, a circular annular plate with an intermediate circular support, was studied in reference [22]. The fundamental frequencies obtained using the DQM differed by about 10% from exact values, and the DQM did not provide satisfactory accuracy for some cases. It is apparent that an error must have occurred in these simple problems. Domain decomposition should have been employed at the intermediate supports but failed to be applied in references [21, 22], because a shear force discontinuity exists there and the continuously differentiable trial functions are employed in the DQM. Domain decomposition has been used and very accurate results have been obtained by the present authors [15]. The above analysis indicates that the study in this paper is necessary for a correct and thorough understanding of the DQ techniques. Moreover, the solution accuracy produced by the method itself can be substantiated quantitatively, since many examples have analytic solutions and the disturbance caused by δ-point values is exempted.

In this paper, the authors concentrated on the free vibration of multispan and stepped Euler beams, and beams carrying an intermediate or end concentrated mass. Since most functions do not have globally smooth solutions, domain decomposition must be employed at the junction of the subdomains concerned. Compatibility conditions and their differential quadrature expressions were explicitly formulated. The length of subdomains was studied in detail. Ample examples were employed to display the application of the domain decomposition in the DQ technique.

2. APPLICATIONS

The free vibration of Euler beams is governed by fourth order differential equations. The fourth order differential equations for various problems have been solved using the GDQR in papers [12, 15-17], and the GDQR expression for a fourth order boundary value differential equation has been used as follows:

$$
\begin{equation*}
w^{(r)}\left(x_{i}\right)=\frac{\mathrm{d}^{r} w\left(x_{i}\right)}{\mathrm{d} x^{r}}=\sum_{j=1}^{N+2} E_{i j}^{(r)} U_{j} \quad(i=1,2, \ldots, N), \tag{1}
\end{equation*}
$$

where $\left\{U_{1}, U_{2}, \ldots, U_{N+2}\right\}=\left\{w_{1}^{(1)}, w_{1}, w_{2}, \ldots, w_{N-1}, w_{N}^{(1)}, w_{N}\right\}$ is employed for the convenience of the notation. w_{j} is the function of value at point $x_{j}, w_{1}^{(1)}$ and $w_{N}^{(1)}$ are the first order derivatives of the displacement function, i.e.; rotation angles, at the first and N th points. $E_{i j}^{(r)}$ are the r th order weighting coefficients at point x_{i}. The GDQR explicit weighting coefficients have been derived in references $[12,17]$ and were used directly in this paper.

The cosine-type sampling points in normalized interval [0,1] will be employed in this work. Their advantage has been discussed in paper [4]

$$
\begin{equation*}
x_{i}=\frac{1-\cos [(i-1) \pi /(N-1)]}{2} \quad(i=1,2, \ldots, N) \tag{2}
\end{equation*}
$$

2.1. EXAMPLE 1: STEPPED BEAMS

Consider the free vibration of a straight Euler beam having stepped cross-section only at one place, as shown in Figure 1. These two sections have uniform cross-sections individually. They have different flexural rigidity $\left(E I_{1}\right.$ and $\left.E I_{2}\right)$ and different cross-section area (A_{1} and A_{2}). Here the GDQR's solutions are compared with those analytical solutions in paper [23], which considered a stepped beam with circular-section and with

Figure 1. The stepped-beam geometry.
$L_{1}=L_{2}=L / 2$ and $\beta=I_{2} / I_{1}$. Then the first and second section's governing differential equations are written, respectively, as follows:

$$
\begin{align*}
& E I_{1} \frac{\mathrm{~d}^{4} w}{\mathrm{~d} x^{4}}=\omega^{2} \rho A_{1} w, \quad x \subset\left[0, L_{1}\right] \tag{3}\\
& E I_{2} \frac{\mathrm{~d}^{4} w}{\mathrm{~d} x^{4}}=\omega^{2} \rho A_{2} w, \quad x \subset\left[L_{1}, L\right], \tag{4}
\end{align*}
$$

where ρ is the density, ω the circular frequency, and L the total length of the beam. Through normalization manipulation, equations (3) and (4) are written, respectively, as

$$
\begin{gather*}
\left(\frac{L}{L_{1}}\right)^{4} \frac{\mathrm{~d}^{4} w}{\mathrm{~d} \zeta^{4}}=\lambda^{4} w, \quad \zeta \subset[0,1] \tag{5}\\
\sqrt{\beta}\left(\frac{L}{L_{2}}\right)^{4} \frac{\mathrm{~d}^{4} w}{\mathrm{~d} \zeta^{4}}=\lambda^{4} w, \quad \zeta \subset[0,1] \tag{6}
\end{gather*}
$$

where $\lambda=\sqrt[4]{\omega^{2} \rho A_{1} L^{4} / E I_{1}}$ is dimensionless frequency parameter, and ζ normalized local co-ordinate.

Usually, the same number N of sampling points of subdomains is used. These two sections thus have a total of $2 N-1$ points, as shown in Figure 1. The two sections shared the common point x_{N}, along with its two corresponding variables w_{N} and $w_{N}^{(1)}$. The independent variables of the first section $\left\{U^{[1]}\right\}$ and the second section $\left\{U^{[2]}\right\}$ in the global co-ordinate are expressed as follows:

$$
\begin{gather*}
\left\{U^{[1]}\right\}=\left\{U_{1}, U_{2}, \ldots, U_{N+2}\right\}=\left\{w_{1}^{(1)}, w_{1}, w_{2}, \ldots, w_{N-1}, w_{N}^{(1)}, w_{N}\right\}, \tag{7a}\\
\left\{U^{[2]}\right\}=\left\{U_{N+1}, U_{N+2}, \ldots, U_{2 N+2}\right\}=\left\{w_{N}^{(1)}, w_{N}, w_{N+1}, \ldots, w_{2 N-2}, w_{2 N-1}^{(1)}, w_{2 N-1}\right\} . \tag{7b}
\end{gather*}
$$

The whole beam has a total of $2 N+2$ independent variables as expressed in equation (7). According to equation (1), the GDQR analogues for governing equations (5) and (6) at each section's inner points x_{i} can be written, respectively, as follows:

$$
\begin{align*}
\left(\frac{L}{L_{2}}\right)^{4} \sum_{j=1}^{N+2} E_{i j}^{(4)} U_{j}^{[1]} & =\lambda^{4} w_{i} \quad(i=2,3, \ldots, N-1), \tag{8}\\
\sqrt{\beta}\left(\frac{L}{L_{2}}\right)^{4} \sum_{j=1}^{N+2} E_{(i-N+1) j}^{(4)} U_{N+j}^{[2]} & =\lambda^{4} w_{i} \quad(i=N+1, N+2, \ldots, 2 N-2) . \tag{9}
\end{align*}
$$

Equations (8) and (9) have a total number of $2 \times(N-2)$ equations. The compatibility conditions at the common points x_{N} are that: (1) the bending moment calculated by section 1 equals the bending moment computed by section 2 , (2) the shear force calculated by section 1 equals the shear force computed by section 2 . They are expressed, respectively, as follows:

$$
\begin{equation*}
E I_{2} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}=E I_{1} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}, \quad E I_{2} \frac{\mathrm{~d}^{3} w}{\mathrm{~d} x^{3}}=E I_{1} \frac{\mathrm{~d}^{3} w}{\mathrm{~d} x^{3}} \tag{10}
\end{equation*}
$$

The two compatibility conditions' GDQR analogues are written, respectively, as

$$
\begin{equation*}
\beta \sum_{j=1}^{N+2} E_{1 j}^{(2)} U_{N+j}^{[2]}-\sum_{j=1}^{N+2} E_{N j}^{(2)} U_{j}^{[1]}=0, \quad \beta \sum_{j=1}^{N+2} E_{1 j}^{(3)} U_{N+j}^{[2]}-\sum_{j=1}^{N+2} E_{N j}^{(3)} U_{j}^{[1]}=0 . \tag{11}
\end{equation*}
$$

For simplicity and convenience, the boundary conditions of pinned, clamped, free, and sliding types are denoted as $\mathrm{P}, \mathrm{C}, \mathrm{F}$ and S respectively. The $\mathrm{P}-\mathrm{C}$ boundary condition will identify the beam with the ends $x=0$ and L having pinned and clamped boundary conditions respectively. Four types of boundary conditions (pinned, clamped, free and sliding) are considered, respectively, as follows:

$$
\begin{equation*}
w=\frac{\mathrm{d}^{2} w}{\mathrm{~d} x^{2}}=0, \quad w=\frac{\mathrm{d} w}{\mathrm{~d} x}=0, \quad \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}^{3} w}{\mathrm{~d} x^{3}}=0, \quad \frac{\mathrm{~d} w}{\mathrm{~d} x}=\frac{\mathrm{d}^{3} w}{\mathrm{~d} x^{3}}=0 \tag{12-15}
\end{equation*}
$$

The GDQR analogues for equation (12) are written at $x=0$ and L, respectively,

$$
\begin{gather*}
U_{2}=0, \quad \sum_{j=1}^{N+2} E_{1 j}^{(2)} U_{j}^{[1]}=0 \quad(x=0), \tag{16a}\\
U_{2 N+2}=0, \quad \sum_{j=1}^{N+2} E_{N j}^{(2)} U_{N+j}^{[2]}=0 \quad(x=L) . \tag{16b}
\end{gather*}
$$

For clamped ends at $x=0$ and L, one has from equation (13), respectively,

$$
\begin{gather*}
U_{2}=0, \quad U_{1}=0 \quad(x=0), \tag{17a}\\
U_{2 N+2}=0, \quad U_{2 N+1}=0 \quad(x=L) \tag{17b}
\end{gather*}
$$

for free ends at $x=0$ and L and from equation (14),

$$
\left.\begin{array}{l}
\sum_{j=1}^{N+2} E_{1 j}^{(3)} U_{j}^{[1]}=0, \\
\sum_{j=1}^{N+2} E_{1 j}^{(2)} U_{j}^{[1]}=0 \quad(x=0), \tag{18b}\\
\sum_{j=1}^{N+2} E_{N j}^{(3)} U_{N+j}^{[2]}=0,
\end{array} \quad \sum_{j=1}^{N+2} E_{N j}^{(2)} U_{N+j}^{[2]}=0 \quad(x=L)\right) .
$$

and for sliding ends at $x=0$ and L and from equation (15),

$$
\begin{gather*}
U_{1}=0, \quad \sum_{j=1}^{N+2} E_{1 j}^{(3)} U_{j}^{[1]}=0 \quad(x=0), \tag{19a}\\
U_{2 N+1}=0, \quad \sum_{j=1}^{N+2} E_{N j}^{(3)} U_{N+j}^{[2]}=0 \quad(x=L) . \tag{19b}
\end{gather*}
$$

There are two boundary conditions at each end, and totally four boundary conditions, which have four GDQR analogues from a proper combination of equations (16)-(19).

Table 1
Numerical results for $\lambda=\sqrt[4]{\rho A_{1} \omega^{2} L^{4} / E I_{1}}$ of the first two modes of stepped beams for various boundary conditions

Together with two equations from compatibility condition equation (11) and $2 \times(N-2)$ equations from governing equations (8) and (9), a total number of $2 N+2$ equations is formed. The total number of independent variables expressed in equation (7) is also $2 N+2$. The resulting differential quadrature equations can be solved to get the required frequencies. The procedures in the solution of formed algebraic eigenvalue equations are detailed in references $[4,12,15]$ and omitted here for brevity. These four types of boundary conditions will form 10 combinations of beam boundary conditions. The present work calculated all the 10 cases with different β values and listed the results in Table 1. Using eight sampling points for each subdomain, the GDQR fundamental frequencies for all the 10 cases are exactly the same as the exact analytical solutions in reference [23] and are accurate to five significant figures. Since only fundamental frequencies were given in reference [23], the second frequencies are calculated purposely for a comparison with other methods. Twelve points are needed for the second frequencies to be accurate to five significant figures.

2.2. EXAMPLE 2: UNIFORM MULTISPAN BEAMS

Consider the equi-spaced uniform multispan beams with each span length l, total length L, flexural rigidity $E I$ and cross-section A. Other prerequisites are the same as those in example 1. The multispan beam with pinned intermediate supports would have a concentrated shear force at the inner supports, which also constitute another kind of
discontinuity. Therefore, domain decomposition must be employed there. What compatibility conditions does one have at this discontinuous place? The rotation angle and the concentrated force are unknown and thus cannot form a compatibility condition. The zero displacement is certainly the simplest compatibility condition. The second compatibility condition is that the bending moment calculated by the left section equals the bending moment computed by the right section. Here a double-span uniform beam's compatibility conditions and corresponding GDQR analogues are given as an example:

$$
\begin{gather*}
w_{N}=0 \quad\left(E I \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}\right)_{\text {left }}=\left(E I \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}\right)_{\text {right }}, \tag{20}\\
U_{N+2}=0, \quad \sum_{j=1}^{N+2} E_{N j}^{(2)} U_{j}^{[1]}-\sum_{j=1}^{N+2} E_{1 j}^{(2)} U_{N+j}^{[2]}=0 . \tag{21}
\end{gather*}
$$

More span beam's identical compatibility conditions at other junctions can be obtained in a similar way and omitted here for simplicity. The GDQR analogues of 10 combinations of boundary conditions have already been listed in equations (16)-(19) for double-span beams. Similar expressions can be easily obtained for more span beams. The governing equation of the $(m+1)$ th span and its GDQR analogues can be written, respectively, as follows:

$$
\begin{gather*}
E I \frac{\mathrm{~d}^{4} w}{\mathrm{~d} x^{4}}=\omega^{2} \rho A w, \quad x \subset[m l,(m+1) l], \tag{22}\\
\sum_{j=1}^{N+2} E_{(i-Q+1) j}^{(4)} U_{P+j}^{[m+1]}=\lambda^{4} w_{i} \quad(i=Q+1, Q+2, \ldots, Q+N-2), \tag{23}
\end{gather*}
$$

where $\lambda=\sqrt[4]{\omega^{2} \rho A l^{4} / E I}$ is a dimensionless frequency parameter. $Q=m N-m+1$ is the numbering of the first sampling point of the $(m+1)$ th span, and $P=m(N+2)-2 m+1$ is the numbering of the last variable of the m th span at inner points.

Again all the 10 combinations of boundary conditions are calculated and compared with results in reference [24], which listed the first six frequencies for $1-15$ spans. The finite element method was used to obtain the frequencies in reference [24]. The present GDQR's first-sixth frequencies are all accurate to more than three significant figures. Here, only F-F case is listed in Table 2 for a comparison. The other cases are also calculated but omitted for simplicity. For a comparison with other methods, the seventh frequencies are also calculated on purpose.

2.3. EXAMPLE 3: UNIFORM BEAMS WITH END MASS

Reference [25] calculated the free vibration of an S-C single-span beam carrying a concentrated mass M at the sliding end. More accurate results than those in reference [25] are presented here. Since the mass is at the end and the beam is of uniform single span, domain decomposition is unnecessary here. This example is designed to show how to implement the boundary condition with the frequency in it. The two boundary conditions

Table 2
Frequency parameters $\lambda=\sqrt[4]{\rho A \omega^{2} l^{4} / E I}$ for $F-F$ multispan beam

Method	N	$\begin{gathered} \text { Span } \\ \text { no. } \end{gathered}$	Mode sequence						
			1	2	3	4	5	6	7
GDQR	20	2	1.87510	3.92660	4.69409	7.06858	7.85476	10.21018	10.99554
	15	3	1.41181	$1 \cdot 64778$	$3 \cdot 57994$	4.27231	$4 \cdot 70627$	$6 \cdot 70658$	7.43063
	12	4	1.50592	1.57080	$3 \cdot 41310$	3.92660	$4 \cdot 43727$	4.71239	6.54456
	12	5	1.52987	1.54793	3.32299	3.71010	4.14305	4.52700	$4 \cdot 71607$
	10	6	1.53642	1.54145	3.27008	3.56846	3.92660	4.28449	$4 \cdot 58076$
	9	7	1.53823	1.53964	$3 \cdot 23687$	3.47167	3.76940	4.08379	$4 \cdot 38121$
	9	8	1.53874	1.53913	$3 \cdot 21483$	$3 \cdot 40317$	$3 \cdot 65284$	3.92660	$4 \cdot 20035$
	9	9	1.53888	1.53899	3.19954	3.35325	3.56450	3.80325	4.04995
	9	10	1.53892	1.53895	3.18854	3.31594	$3 \cdot 49625$	3.70533	3.92660
	9	11	1.53893	1.53894	3.18036	3.28743	$3 \cdot 44263$	3.62658	3.82513
	9	12	1.53893	1.53894	3.17414	$3 \cdot 26523$	3.39985	3.56250	3.74103
	9	13	1.53894	1.53894	$3 \cdot 16929$	3.24763	3.36529	3.50978	3.67075
	9	14	1.53894	1.53894	3.16545	3.23348	3.33701	3.46597	$3 \cdot 61155$
	9	15	1.53894	1.53894	3.16235	$3 \cdot 22194$	3.31362	$3 \cdot 42925$	$3 \cdot 56129$
	9	16	1.53894	1.53894	3.15981	3.21241	3.29409	3.39820	$3 \cdot 51834$
	9	17	1.53894	1.53894	3.15771	3.20447	$3 \cdot 27763$	$3 \cdot 37175$	3.48139
	9	18	1.53894	1.53894	3.15596	3.19777	3.26365	3.34907	$3 \cdot 44940$
	9	19	1.53894	1.53894	3.15447	3.19208	$3 \cdot 25167$	$3 \cdot 32948$	$3 \cdot 42156$
	9	20	1.53894	1.53894	3.15320	3.18721	$3 \cdot 24134$	3.31247	3-39720
Reference [24]		2	1.875	3.927	4.694	7.069	7.855	10.21	
		3	1.412	1.648	$3 \cdot 580$	4.273	4.707	6.707	
		4	1.506	1.571	3.413	3.928	$4 \cdot 438$	4.713	
		5	1.530	1.548	3.324	3.710	$4 \cdot 144$	4.528	
		6	1.537	1.542 1.540	3.270	$3 \cdot 568$	3.927 3	4.285	
		7	1.538	1.540	3.237	3.471	3.770	4.084	
		8	1.539	1.539	3.215	3.404	3.653	3.926	
		9	1.539	1.539	3.200	3.353	$3 \cdot 564$	3.803	
		10	1.539	1.539	3.189	$3 \cdot 316$	3.496	$3 \cdot 705$	
		11	1.539 1	1.539 1.539	3.180	3.287	3.443	3.626	
		12	1.539	1.539	3.174	$3 \cdot 265$	$3 \cdot 400$	3.563	
		13	1.539	1.539	3.169	$3 \cdot 248$	3.365	3.510	
		14	1.539	1.539	3.166	3.234	3.337	$3 \cdot 466$	
		15	1.539	1.539	$3 \cdot 162$	$3 \cdot 222$	$3 \cdot 313$	$3 \cdot 430$	

at sliding end are zero rotation angle and the following equation [25]:

$$
\begin{equation*}
E I \frac{\mathrm{~d}^{3} W\left(x_{1}, t\right)}{\mathrm{d} x^{3}}=M \frac{\partial^{2} W\left(x_{1}, t\right)}{\partial t^{2}} \tag{24}
\end{equation*}
$$

The clamped boundary condition is identical to the above-mentioned one. The GDQR analogue of governing equation is identical to equation (8) with $L_{1}=L$. If the normal mode is assumed as $W(x, t)=w(x) \mathrm{e}^{\mathrm{i} \omega t}$, substituting into equation (24) produces

$$
\begin{equation*}
E I \frac{\mathrm{~d}^{3} w\left(x_{1}\right)}{\mathrm{d} x^{3}}=-M \omega^{2} w_{1} . \tag{25}
\end{equation*}
$$

Its GDQR analogue can be written as

$$
\begin{equation*}
-\frac{\rho A L}{M} \sum_{j=1}^{N+2} E_{1 j}^{(3)} U_{j}=\lambda^{4} w_{1}, \tag{26}
\end{equation*}
$$

where $\lambda=\sqrt[4]{\omega^{2} \rho A L^{4} / E I}$ is dimensionless frequency parameter.
This boundary condition contains the eigenvalue of the problem. Usually, the two displacements and two rotation angles at two ends can be eliminated in the final standard eigenvalue equation of order $N-2$, as shown in papers [4, 12]. But now one boundary displacement w_{1} is connected with the frequency. Then the final standard eigenvalue equation is of order $N-1$. Even if all the boundary independent variables are connected with the frequency, with the final standard eigenvalue equation being of order $N+2$, no algorithmic difficulty is caused in the GDQR. The analytic frequency characteristic equation was [25]

$$
\begin{equation*}
\frac{M}{\rho A L}=\frac{\sin \lambda \cosh \lambda+\cos \lambda \sinh \lambda}{\lambda(1-\cos \lambda \cosh \lambda)} . \tag{27}
\end{equation*}
$$

Similarly, if the beam is an F-C single-span beam carrying a concentrated mass at the free end, only the boundary condition at $x=0$ is changed from zero rotation angle to zero moment with all the other equations identical to those for the $\mathrm{S}-\mathrm{C}$ case. Table 3 showed the GDQR results. The characteristic equation for the $\mathrm{F}-\mathrm{C}$ case was [26]

$$
\begin{equation*}
\frac{M}{\rho A L}=\frac{1+\cos \lambda \cosh \lambda}{\lambda(\sin \lambda \cosh \lambda-\cos \lambda \sinh \lambda)} . \tag{28}
\end{equation*}
$$

2.4. EXAMPLE 4: STEPPED BEAMS WITH END MASS

For the above-mentioned S-C single-span beam carrying a concentrated mass at the sliding end, reference [27] has considered non-uniform cross-section with discontinuity at $x=L / 3, L / 2$ and $2 L / 3$, as shown in Figure 2. Each section has the same width of a rectangular cross-section, and their height ratio $\alpha=t_{1} / t_{2}=0 \cdot 8$. The GDQR results for $x=L / 2$ case are obtained with two sections. The GDQR results for $x=L / 3$ and $2 L / 3$ cases are obtained with three equal-length sections. All the necessary boundary conditions,

Table 3
Frequency parameter $\lambda=\sqrt[4]{\rho A \omega^{2} L^{4} / E I}$ of uniform beams with end mass

Boundary condition	$\begin{gathered} M \\ \rho A L \end{gathered}$	Mode sequence						
		1	2	3	4	5	6	7
S-C	0	$2 \cdot 36501$	5.49778	8.63934	11.78091	14.92249	18.06407	21-20564
	$0 \cdot 2$	2.13339	5.17434	8.21537	11.29334	14.38954	17.49745	20.61314
	$0 \cdot 6$	1.87254	4.96859	8.02377	$11 \cdot 12516$	14.24155	17.36611	20.49541
	1	1.71888	$4 \cdot 89277$	7.96446	11.07821	14.20285	17.33325	$20 \cdot 46690$
	$1 \cdot 6$	1.57028	$4 \cdot 84017$	7.92627	11.04909	$14 \cdot 17936$	17.31359	$20 \cdot 45000$
	2	1.49954	$4 \cdot 82063$	7.91266	11.03891	$14 \cdot 17123$	17.30683	20.44422
	$2 \cdot 6$	1.41742	$4 \cdot 80159$	7.89967	11.02929	$14 \cdot 16360$	$17 \cdot 30050$	20.43882
	3	1.37341	4.79279	7.89376	11.02494	$14 \cdot 16016$	17.29766	20.43640
	$3 \cdot 6$	$1 \cdot 31834$	4.78302	7.88726	11.02019	$14 \cdot 15641$	17.29457	20.43376
	4	$1 \cdot 28711$	4.77804	7.88398	11.01779	$14 \cdot 15452$	17.29301	20.43244
	$4 \cdot 6$	$1 \cdot 24639$	4.77210	7.88009	11.01496	$14 \cdot 15229$	17.29118	20.43088
	5	$1 \cdot 22252$	4.76890	7.87800	11.01344	$14 \cdot 15110$	$17 \cdot 29019$	$20 \cdot 43005$
	10	1.03713	4.74995	7.86578	11.00461	$14 \cdot 14419$	$17 \cdot 28451$	20.42522
	15	0.93997	4.74342	7.86163	11.00163	$14 \cdot 14186$	17.28260	20.42361
	20	0.87607	4.74012	7.85954	11.00013	$14 \cdot 14069$	17.28164	20.42279
F-C	0	1.87509	4.69404	7.85468	10.99543	$14 \cdot 13703$	17.27859	$20 \cdot 42015$
	$0 \cdot 5$	1.41996	$4 \cdot 11113$	$7 \cdot 19034$	$10 \cdot 29845$	$13 \cdot 42100$	$16 \cdot 55028$	19.68326
	1	1.24792	4.03114	7.13413	10.25662	13.38776	16.52273	19.65975
	1.5	1.14644	3.99951	7.11342	10.24168	13.37608	16.51315	19.65163
	2	1.07620	3.98257	$7 \cdot 10265$	10.23402	$13 \cdot 37012$	16.50828	19.64752
	$2 \cdot 5$	1.02327	3.97202	7.09605	10.22935	13.36651	16.50533	19.64503
	3	$0 \cdot 98123$	3.96482	7.09160	$10 \cdot 22621$	13.36409	16.50336	19.64337
	$3 \cdot 5$	$0 \cdot 94662$	3.95958	7.08838	$10 \cdot 22395$	$13 \cdot 36235$	16.50194	19.64217
	4	0.91736	3.95561	7.08596	$10 \cdot 22225$	$13 \cdot 36104$	$16 \cdot 50088$	19.64128
	$4 \cdot 5$	$0 \cdot 89213$	3.95249	7.08406	$10 \cdot 22093$	$13 \cdot 36002$	$16 \cdot 50005$	$19 \cdot 64058$
	5	$0 \cdot 87002$	3.94998	7.08254	10.21986	$13 \cdot 35920$	16.49939	19.64002
	$7 \cdot 5$	0.78914	3.94234	7.07794	10.21666	$13 \cdot 35674$	16.49739	19.63834
	10	0.73578	3.93847	7.07562	10.21505	$13 \cdot 35550$	16.49638	19.63749
	20	0.62051	3.93258	7.07211	$10 \cdot 21262$	13.35364	16.49487	19.63623
	50	0.49434	3.92900	7.07000	10.21115	13.35242	16.49397	19.73546
	100	0.41593	3.92780	7.06929	10.21067	13.35214	16.49366	19.63521
	200	0.34986	3.92720	7.06894	$10 \cdot 21042$	13.35196	16.49351	19.63508

Figure 2. The non-uniform S-C beam with end mass.
compatibility conditions and governing equation have been given before and omitted here for brevity. Table 4 showed good agreements between the GDQRs and FEMs results.

2.5. EXAMPLE 5: UNIFORM BEAMS WITH INTERMEDIATE MASS

References [28,29] considered the concentrated mass at an intermediate point ($x=L / 3$ or $L / 2$) of single-span uniform beam. The mass will apply a dynamic concentrated force in vibration problems. Domain decomposition must also be employed, though the beam is uniform single span. For the case $x=L / 2$, two equal-length sections are used. The compatibility conditions are as follows:

$$
\begin{equation*}
\left(E I \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}\right)_{1}=\left(E I \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}\right)_{2}, \quad\left(E I \frac{\mathrm{~d}^{3} w}{\mathrm{~d} x^{3}}\right)_{2}-\left(E I \frac{\mathrm{~d}^{3} w}{\mathrm{~d} x^{3}}\right)_{1}=M \omega^{2} w \tag{29}
\end{equation*}
$$

where the suffix expresses the section number. The two compatibility conditions' GDQR expressions are written as

$$
\begin{gather*}
\left(\frac{L}{L_{1}}\right)^{2} \sum_{j=1}^{N+2} E_{N j}^{(2)} U_{j}^{[1]}-\left(\frac{L}{L_{2}}\right)^{2} \sum_{j=1}^{N+2} E_{1 j}^{(2)} U_{N+j}^{[2]}=0 \\
\frac{\rho A L}{M}\left(\left(\frac{L}{L_{2}}\right)^{3} \sum_{j=1}^{N+2} E_{1 j}^{(3)} U_{N+j}^{[2]}-\left(\frac{L}{L_{1}}\right)^{3} \sum_{j=1}^{N+2} E_{N j}^{(3)} U_{j}^{[1]}\right)=\lambda^{4} w_{N}, \tag{30}
\end{gather*}
$$

where $\lambda=\sqrt[4]{\omega^{2} \rho A L^{4} / E I}$ is dimensionless frequency parameter.
The GDQR analogues of governing equations are identical to equations (8) and (9) with $\beta=1$ (due to uniform cross-section). Only $\mathrm{P}-\mathrm{P}$ and $\mathrm{C}-\mathrm{C}$ beams are considered here. For the case $x=L / 3$, both three equal-length and two different-length sections are used. The results are listed in Table 5(a)-(c). The FEM was used in paper [24]. The Laplace transform was employed to obtain a characteristic equation in paper [28]. An analytic characteristic equation was obtained in paper [29].

Table 4
Frequency parameter $\lambda=\sqrt[4]{\rho A_{1} \omega^{2} L^{4} / E I_{1}}$ of $S-C$ stepped $(x=L / 3, L / 2,2 L / 3)$ and uniform $(x=0)$ beams with end mass

		$M / \rho A_{1} L$							
x	Method	0	$0 \cdot 2$	$0 \cdot 4$	$0 \cdot 6$	$0 \cdot 8$	1	5	10
0	GDQR	5.59327	4.55135	3.92932	$3 \cdot 50640$	3.19544	2.95455	1.49456	1.07564
0	Exact [27]	5.59332	4.552	3.929	$3 \cdot 506$	$3 \cdot 195$	2.954	1.494	1.075
$L / 3$	GDQR	6.70986	5.46382	4.71752	4.20968	3.83617	3.54681	1.79350	1.29067
L/3	FEM [27]	6.70	$5 \cdot 45$	4.71	$4 \cdot 20$	3.83	$3 \cdot 54$	1.79	$1 \cdot 28$
L/2	GDQR	6.82247	5.52233	4.75325	4.23365	$3 \cdot 85322$	3.55943	1.79294	1.28945
L/2	FEM [27]	6.81	$5 \cdot 51$	$4 \cdot 74$	$4 \cdot 22$	$3 \cdot 84$	$3 \cdot 55$	1.79	$1 \cdot 28$
$2 L / 3$	GDQR	6.79785	5.47275	4.69859	$4 \cdot 17885$	3.79975	$3 \cdot 50773$	1.76203	1.26666
2L/3	FEM [27]	6.79	$5 \cdot 46$	$4 \cdot 69$	$4 \cdot 17$	3.79	$3 \cdot 50$	1.76	$1 \cdot 26$

Table 5 (a)
Frequency parameter $\lambda=\sqrt[4]{\rho A \omega^{2} L^{4} / E I}$ of uniform beams carrying a concentrated mass at $x=L / 2$

Boundary condition	M	Mode sequence					
	$\rho A L$	1	2	3	4	5	6
P-P	10^{-10}	$3 \cdot 14159$	6.28319	9.42478	12.56637	$15 \cdot 70796$	18.84956
	10^{-5}	3.14158	6.28319	$9 \cdot 42473$	12.56637	15.70788	18.84956
	0.01	3.12607	$6 \cdot 28319$	$9 \cdot 37897$	12.56637	15.63277	18.84956
	0.01	(3.129)	(6.285)	(9.380)			
	$0 \cdot 1$	$3 \cdot 00130$	6.28319	9.05955	12.56637	15-17126	18.84956
	$0 \cdot 1$	(3.004)	(6-285)	(9.061)			
	0.2	$2 \cdot 88726$	6.28319	8.83030	12.56637	14.90092	18.84956
	$0 \cdot 2$	\{2.887\}					
	$0 \cdot 5$	2.63931	$6 \cdot 28319$	8.47440	12.56637	14.56167	18.84956
	1	2.38319	$6 \cdot 28319$	8-23944	12.56637	14.38016	18.84956
	1	\{2.384\}					
	2	2.09598	$6 \cdot 28319$	8.07304	12.56637	14.26797	18.84956
	5	1.71985	$6 \cdot 28319$	7.94909	12.56637	14.19198	18.84956
	5	\{1719\}					
	10	1.46271	6.28319	7.90264	$12 \cdot 56637$	14.16501	18.84956
	10	\{1.463\}					
	50	0.98746	$6 \cdot 28319$	7.86334	12.56637	14.14281	18.84956
	100	$0 \cdot 83135$	$6 \cdot 28319$	7.85829	12.56637	14.13999	18.84956
	10^{-10}	4.73004	7.85320	10.99561	14.13717	17.27876	20.42035
	10^{-5}	4.73001	7.85320	$10 \cdot 99555$	14.13717	17.27867	20.42035
	0.01	$4 \cdot 70065$	7.85320	$10 \cdot 94300$	14.13717	17.19633	20.42035
	0.01	(4.701)	(7.853)	(10.943)			
	$0 \cdot 1$	4.46984	7.85320	10.58876	14.13717	16.70539	20.42035
	$0 \cdot 1$	(4.470)	(7.853)	(10.589)			
	$0 \cdot 2$	$4 \cdot 26678$	7.85320	10.34868	14.13717	16.43074	20.42035
	$0 \cdot 2$	\{4.250\}					

Table 5 (a)

Continued							
Boundary condition	M	Mode sequence					
	$\rho A L$	1	2	3			6
C-C	$0 \cdot 5$	$3 \cdot 84707$	7.85320	$9 \cdot 99991$	$14 \cdot 13717$	16.09984	$20 \cdot 42035$
	1	$3 \cdot 43776$	$7 \cdot 85320$	$9 \cdot 78554$	14•13717	15.92892	$20 \cdot 42035$
	1	\{3.440 $\}$					
	2	$2 \cdot 99908$	7.85320	9.64127	$14 \cdot 13717$	15.82532	$20 \cdot 42035$
	5	$2 \cdot 44504$	7.85320	9.53780	$14 \cdot 13717$	15.75599	$20 \cdot 42035$
	5	$\{2 \cdot 446\}$					
	10	2.07425	7.85320	$9 \cdot 49990$	$14 \cdot 13717$	$15 \cdot 73155$	$20 \cdot 42035$
	10	\{2.072					
	50	1.39727	7.85320	$9 \cdot 46820$	$14 \cdot 13717$	$15 \cdot 71150$	$20 \cdot 42035$
	100	$1 \cdot 17604$	7.85320	9.46415	$14 \cdot 13717$	15.70896	$20 \cdot 42035$

[^0]Table 5 (b)
Frequency parameter $\lambda=\sqrt[4]{\rho A \omega^{2} L^{4} / E I}$, which is obtained using three equal-length sections, of uniform beams carrying a concentrated mass at

$$
x=L / 3
$$

Boundary condition	M	Mode sequence					
	$\rho A L$	1	2	3	4	5	6
P-P	10^{-10}	$3 \cdot 14159$	6.28319	9.42478	12.56637	15.70796	18.84956
	10^{-5}	3. 14158	$6 \cdot 28316$	$9 \cdot 42478$	12.56632	15.70790	18.84956
	0.01	3.12991	$6 \cdot 26017$	$9 \cdot 42478$	12.52046	15.65212	18.84956
	0.01	(3.133)	(6.262)	(9.426)			
	$0 \cdot 1$	3.03278	6.09308	9.42478	12.19934	15.33373	18.84956
	$0 \cdot 1$	(3.0339)	(6.095)	(9.426)			
	$0 \cdot 2$	$2 \cdot 93929$	5.96510	9.42478	11.97435	15.16707	18.84956
	$0 \cdot 2$	\{2.9413\}					
	0.5	2.72241	5.75135	$9 \cdot 42478$	11.64505	14.97854	18.84956
	$0 \cdot 5$	\{2.7258\}					
	1	2.48255	5.59983	$9 \cdot 42478$	11.44416	14.88676	18.84956
	1	\{2.485\}					
	2	2.19986	$5 \cdot 48777$	$9 \cdot 42478$	11.31035	14.83304	18.84956
	2	\{2.2043\}					
	5	1.81570	$5 \cdot 40203$	9.42478	11.21524	14.79791	18.84956
	5	\{1.8199\}					
	10	1.54770	$5 \cdot 36948$	9.42478	11.18059	14.78568	18.84956
	10	\{1.5514\}					
	50	1.04684	5.34178	9.42478	$11 \cdot 15170$	14.77571	18.84956
	50	\{1.0494\}					
	100	0.88156	5.33821	9.42478	$11 \cdot 14802$	14.77445	18.84956
	100	\{0.88369 \}					

Table 5 (b)
Continued

Boundary condition	M	Mode sequence					
	$\rho A L$	1	2	3	4	5	6
	10^{-10}	4.73004	7.85320	10.99561	$14 \cdot 13717$	17.27876	20.42035
	10^{-5}	4.73002	7.85316	10.99560	$14 \cdot 13713$	17.27868	20.42035
	$0 \cdot 01$	4.71210	7.81391	10.99152	$14 \cdot 10336$	$17 \cdot 20276$	20.41394
	$0 \cdot 01$	(4.712)	(7.814)	(10.992)			
	$0 \cdot 1$	$4 \cdot 56043$	7.53842	10.96400	$13 \cdot 86852$	$16 \cdot 77405$	$20 \cdot 37802$
	$0 \cdot 1$	(4.560)	(7.538)	(10.964)			
	$0 \cdot 2$	4.41153	7.34045	10.94524	$13 \cdot 70666$	16.55492	$20 \cdot 35909$
C-C	$0 \cdot 5$	$4 \cdot 06264$	7.03852	$10 \cdot 91762$	$13 \cdot 47612$	16.31369	20.33683
	1	3.68039	6.84806	10.90034	$13 \cdot 34025$	16.19944	$20 \cdot 32541$
	1	\{3.680\}					
	2	3.24028	6.72025	$10 \cdot 88854$	$13 \cdot 25206$	$16 \cdot 13371$	20.31849
	5	$2 \cdot 65859$	6.62992	10.87999	$13 \cdot 19058$	16.09120	20.31384
	10	$2 \cdot 26054$	6.59728	$10 \cdot 87684$	$13 \cdot 16843$	16.07649	20.31220
	50	$1 \cdot 52559$	6.57020	$10 \cdot 87420$	$13 \cdot 15008$	16.06453	$20 \cdot 31085$
	100	$1 \cdot 28435$	6.56676	$10 \cdot 87386$	$13 \cdot 14774$	16.06302	$20 \cdot 31068$

[^1]Table 5 (c)
Frequency parameter $\lambda=\sqrt[4]{\rho A \omega^{2} L^{4} / E I}$, which is obtained using two sections of different length, of uniform beams carrying a concentrated mass at $x=L / 3$

Boundary condition	M	Mode sequence					
	$\rho A L$	1	2	3	4	5	6
$\mathrm{P}-\mathrm{P}$	10^{-10}	$2 \cdot 99811$	$6 \cdot 42423$	9.42478	12.42563	$15 \cdot 84870$	18.84956
	10^{-5}	2.99810	$6 \cdot 42421$	9.42478	12.42558	$15 \cdot 84864$	18.84956
	$0 \cdot 01$	$2 \cdot 98631$	$6 \cdot 40288$	$9 \cdot 42478$	$12 \cdot 37620$	$15 \cdot 79745$	18.84956
	$0 \cdot 01$	4.58\%	-2.28\%	0\%	1.15\%	-0.90\%	0%
	$0 \cdot 1$	$2 \cdot 88892$	$6 \cdot 24725$	9.42478	12.03635	$15 \cdot 50192$	$18 \cdot 84956$
	$0 \cdot 2$	2.79625	$6 \cdot 12734$	9.42478	11.80293	$15 \cdot 34420$	18.84956
	$0 \cdot 5$	2.58429	5.92549	9.42478	11.46580	$15 \cdot 16222$	18.84956
	1	$2 \cdot 35306$	5.78091	9.42478	$11 \cdot 26193$	15.07192	18.84956
	2	2.08297	5.67293	9.42478	$11 \cdot 12669$	15.01847	18.84956
	5	1.71801	5.58956	9.42478	11.03079	14.98325	18.84956
	10	1.46407	5.55769	$9 \cdot 42478$	10.99589	14.97094	$18 \cdot 84956$
	10	$5 \cdot 40 \%$	-3.51\%	0%	1.65%	$-1 \cdot 25 \%$	0%
	50	$0 \cdot 99008$	$5 \cdot 53048$	$9 \cdot 42478$	$10 \cdot 96681$	$14 \cdot 96088$	18.84956
	100	$0 \cdot 83375$	5.52697	9.42478	$10 \cdot 96310$	14.95961	18.84956
	10^{-10}	4.62970	7.94594	11.07899	13.96678	17.35779	$20 \cdot 50815$
	10^{-5}	$4 \cdot 62968$	$7 \cdot 94591$	$11 \cdot 07899$	$13 \cdot 96674$	$17 \cdot 35771$	$20 \cdot 50814$
	$0 \cdot 01$	$4 \cdot 61025$	7.90999	11.07702	13.92588	17.28748	20.50522
	$0 \cdot 01$	2.16\%	-1.23%	-0.78%	- 0.41%	-0.49\%	-0.45%
	$0 \cdot 1$	4.44831	$7 \cdot 65829$	11.06337	13.64767	16.89121	$20 \cdot 48812$

Table 5 (c)
Continued

Boundary condition	M	Mode sequence					
	$\rho A L$	1	2	3	4	5	6
$\mathrm{C}-\mathrm{C}$	$0 \cdot 2$	$4 \cdot 29298$	7.47747	11.05367	13.46121	16.68794	$20 \cdot 47855$
	$0 \cdot 5$	3.93887	7.20049	11.03871	13.20130	16.46219	$20 \cdot 46673$
	1	$3 \cdot 56032$	7.02374	11.02889	13.05048	$16 \cdot 35401$	$20 \cdot 46040$
	2	$3 \cdot 13041$	6.90343	11.02197	12.95332	$16 \cdot 29124$	20.45647
	5	2.56639	6.81720	11.01684	12.88587	$16 \cdot 25041$	20.45379
	10	2.18160	6.78573	11.01492	$12 \cdot 86163$	$16 \cdot 23624$	$20 \cdot 45283$
	10	3.49\%	- 2.86%	-1.27%	2.33\%	- 0.99\%	-0.69%
	50	1.47204	6.75950	11.01330	12.84155	$16 \cdot 22470$	20.45204
	100	$1 \cdot 23925$	6.75615	$11 \cdot 01310$	$12 \cdot 83900$	$16 \cdot 22324$	$20 \cdot 45194$

Note: Data expressed in per cent are relative errors compared with the results in Table 5(b).

3. DISCUSSION

Domain decomposition must be employed in the DQ technique if the solution function is not continuously differentiable in the solution domain, since the weighting coefficients are obtained using continuously differentiable trial functions. Within a subdomain, the solution function should be continuously differentiable. At the junction of the subdomains concerned, compatibility conditions must be implemented in a strong form. Naturally, the governing equations are written individually for the sections with different flexural rigidity as done in equations (3) and (4), and domain decomposition is applied accordingly. However, domain decomposition should still be employed for multispan beams with uniform cross-sections, since a discontinuity exists there too. Similarly, domain decomposition must be applied to example 5, which is more deceptive since it is a uniform single-span beam. It is clear that every subdomain end has two compatibility conditions corresponding to two independent variables. Four conditions are indispensable to the fourth order governing equations.

In all the examples in this work, eight sampling points for each subdomain produce the fundamental frequencies accurate to about five significant figures. More than 15 discrete points for each subdomain will bring about the first-sixth frequencies accurate to about seven significant figures. For more than five span beams, eight sampling points for each subdomain are usually used.

When the domain decomposition point in examples 4 and 5 is not at the center of the beam (i.e., $x=L / 3$ and $2 L / 3$), three equal-length sections had to be used to obtain more accurate results than two unequal-length sections. In fact, the results obtained using two unequal-length sections are very bad, as shown in Table 5(c) where some relative errors are about 5%. This quite peculiar phenomenon is first reported here in the DQ solution, and needs more study. The FDM and the present DQ technique solve different equations in a strong form. It is well known that the FDM usually produces a worse accuracy with unequal length grids than with equal grids, while the authors think that a similar phenomenon may exist in the present DQ technique.

When the concentrated mass ratio $M / \rho A L$ is gradually reduced to zero, the obtained frequency should equal that calculated without mass. In actual calculation, only a very small number can be employed. The mass ratio $M / \rho A L$ should be larger than 10^{-12}. If it is less than this number, unreasonable results are obtained.

It is interesting to note that the frequencies of the first and second modes for multispan F-F beams in Table 2 are identical $(1-53894)$ when the span number is larger than 11. For multispan F-P, F-C, and F-S beams, their first frequencies are all 1.53894 when the span number exceeds a certain number. The beam should adopt two different modes for the first and second modes. The two different modes for the first and second modes of multispan F-F beams should be exactly the first mode of multispan $\mathrm{F}-\mathrm{P}, \mathrm{F}-\mathrm{C}$, or $\mathrm{F}-\mathrm{S}$ beams. Therefore, the frequencies of the first and second modes are identical (1.53894) for $\mathrm{F}-\mathrm{F}$ multispan beams when the span number is larger than 11.

It is also noted that the frequencies for even modes given in Table 5(a) do not change with the change of $M / \rho A L$. The reason is that the displacement at $x=L / 2$ is always zero for even modes. The mid-point equals a simply supported point. Therefore, the mid-point mass has no effects, and the corresponding frequencies do not change with the change of $M / \rho A L$.

4. CONCLUSION

Five examples for the free vibration of Euler beams have been applied using the domain decomposition and the GDQR. Since compatibility conditions should be implemented in
a strong form at the junction of the subdomains concerned, compatibility conditions and their differential quadrature expressions were explicitly formulated. A peculiar phenomenon was found in the differential quadrature applications that equal-length subdomains give more accurate results than unequal-length ones using the same number of subdomain grids. The study in this work is necessary for a correct and thorough understanding of the DQ techniques. Various examples were presented and very accurate results have been obtained.

REFERENCES

1. R. Bellman and J. Casti 1971 Journal of Mathematical Analysis and Applications 34, 235-238. Differential quadrature and long term integration.
2. R. Bellman, B. G. Kashef and J. Casti 1972 Journal of Computational Physics 10, 40-52. Differential quadrature: a technique for the rapid solution of non-linear partial differential equations.
3. N. Bellomo 1997 Mathematical and Computer Modelling 26, 13-34. Nonlinear models and problems in applied sciences from differential quadrature to generalized collocation methods.
4. C. W. Bert and M. Malik 1996 Applied Mechanics Review 49, 1-27. Differential quadrature method in computational mechanics: a review.
5. S. K. Jang, C. W. Bert and A. G. Striz 1989 International Journal for Numerical Methods in Engineering 28, 561-577. Application of differential quadrature to static analysis of structural components.
6. C. Shu and W. Chen 1999 Journal of Sound Vibration 222, 239-257. On optimal selection of interior points for applying discretized boundary conditions in DQ vibration analysis of beams and plates.
7. X. Wang and H. Gu 1997 International Journal for Numerical Methods in Engineering 40, 759-772. Static analysis of frame structures by the differential quadrature element method.
8. W. Chen, A. G. Striz and C. W. Bert 1997 International Journal for Numerical Methods in Engineering 40, 1941-1956. A new approach to the differential quadrature method for fourth-order equations.
9. X. Wang, Y. L. Wang and R. B. Chen 1998 Communications in Numerical Methods in Engineering 14, 1133-1141. Static and free vibrational analysis of rectangular plates by the differential quadrature element method.
10. H. Z. Gu and X. W. Wang 1997 Journal of Sound Vibration 202, 452-459. On the free vibration analysis of circular plates with stepped thickness over a concentric region by the differential quadrature element method.
11. T. Y. Wu and G. R. Liu 2000 in the Abstract Book for ICTAM2000, 119. 20th International Congress of Theoretical and Applied Mechanics, Chicago. A generalization of the differential quadrature method.
12. T. Y. WU and G. R. Liv 1999 Computational Mechanics 24, 197-205. The differential quadrature as a numerical method to solve the differential equation.
13. T. Y. WU and G. R. Liu 2000 Journal of Sound Vibration 233, 195-213. The generalized differential quadrature rule for initial-value differential equations.
14. G. R. Liu and T. Y. Wu 2000 Journal of Sound Vibration 237, 805-817. Numerical solution for differential equations of a Duffing type nonlinearity using the generalized differential quadrature rule.
15. T. Y. Wu and G. R. Liu 2000 International Journal of Pressure Vessels and Piping 77, 149-157. Axisymmetric bending solution of shells of revolution by the generalized differential quadrature rule.
16. T. Y. WU and G. R. Liu 1999 in Computational Mechanics for the Next Millennium. Proceedings of Fourth Asia-Pacific Conference on Computational Mechanics (C. M. Wang, K. H. Lee and K. K. Ang, editors), Vol. 1, 223-228. A generalized differential quadrature rule for analysis of thin cylindrical shells.
17. T. Y. WU and G. R. Liv 2001 International Journal for Numerical Methods in Engineering 50, 1907-1929. The generalized differential quadrature rule for fourth order differential equations.
18. T. Y. WU and G. R. Liu 2000 Communications in Numerical Methods in Engineering 16, 777-784. Application of the generalized differential quadrature rule to sixth-order differential equations.
19. T. Y. Wu and G. R. Liu 2001 Communications in Numerical Methods in Engineering 17, 355-364. Application of the generalized differential quadrature rule to eighth-order differential equations.
20. G. R. Liu and T. Y. Wu 2000 International Journal for Numerical Methods in Engineering (in press). An application of the generalized differential quadrature rule in Blasius and Onsager equations.
21. H. Du, K. M. Liew and M. K. Lim 1996 Journal of Engineering Mechanics, American Society of Civil Engineers 122, 95-100. Generalized differential quadrature method for buckling analysis.
22. E. Romanelli, R. E. Rossi, P. A. A. Laura and R. H. Gutierrez 1998 Journal of Sound Vibration 212, 564-571. Transverse vibrations of a circular annular plate with an intermediate circular support and a free inner edge.
23. S. K. Jang and C. W. Bert 1989 Journal of Sound Vibration 130, 342-346. Free vibration of stepped beams: exact and numerical solutions.
24. R. D. Blevins 1979 Formulas for Natural Frequency and Mode Shape. New York: Van Nostrand Reinhold Company.
25. P. A. A. Laura and P. L. Verniere de Irassar 1981 Applied Acoustics 14, 93-99. Vibrations of a beam fixed at one end and carrying a guided mass at the other.
26. K. S. Granham 1996 Schaum's Outline of Theory and Problems of Mechanical Vibrations. New York: McGraw-Hill.
27. E. A. Bambill and P. A. A. Laura 1989 Journal of Sound Vibration 130, 167-170. Application of the Rayleigh-Schmidt method when the boundary conditions contain the eigenvalues of the problem.
28. R. P. Goel 1976 Journal of Sound Vibration 47, 9-14. Free vibrations of a beam-mass system with elastically restrained ends.
29. L. S. SRINATH and Y. C. Das 1967 Journal of Applied Mechanics 34, 784-785. Vibrations of beams carrying mass.

[^0]: Note: Data in "()" from reference [28], in "\{ \}" from reference [24].

[^1]: Note: Data in "()" from reference [28], in "\{ \}" from reference [29].

